Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The major aromatic constituents of petroleum products viz. benzene, toluene, and mixture of xylenes (BTX) are responsible for environmental pollution and inflict serious public concern. Therefore, BTX biodegradation potential of individual as well as formulated bacterial consortium was evaluated. This study highlighted the role of hydrogen peroxide (H(2)O(2)), nitrate, and phosphate in stimulating the biodegradation of BTX compounds under hypoxic condition. The individual bacterium viz. Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains and a consortium comprising of the above bacteria were inoculated to BTX-containing liquid medium and in soil. The bioremediation experiment was carried out for 120 h in BTX-containing liquid culture and for 90 days in BTX-contaminated soil. The kinetics of BTX degradation either in presence or absence of H(2)O(2), nitrate, and phosphate was analyzed using biochemical and gas chromatographic (GC) technique. Bacterial consortium was found to be superior in degrading BTX either in soil or in liquid medium as compared to degradation of same compounds by individual strains of the consortium. The rate of BTX biodegradation was further enhanced when the liquid medium/soil was exogenously supplemented with 0.01 % (v/v) H(2)O(2), phosphate, and nitrate(.) The GC analysis of BTX biodegradation (90 days post-inoculation) in soil by bacterial consortium confirmed the preferential degradation of benzene compared to m-xylene and toluene. It may be concluded that the bacterial consortium in the present study can degrade BTX compounds at a significantly higher rate as compared to the degradation of the same compounds by individual members of the consortium. Further, addition of H(2)O(2) in the culture medium as an additional source of oxygen, and nitrate and phosphate as an alternative electron acceptor and macronutrient, respectively, significantly enhanced the rate of BTX biodegradation under oxygen-limited condition.


Ashis K Mukherjee, Naba K Bordoloi. Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium. Environmental science and pollution research international. 2012 Sep;19(8):3380-8

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 22528987

View Full Text