Clear Search sequence regions


The adult periodontal ligament (PDL) is considered to contain progenitor cells that are involved in the healing of periodontal wounds. Treatment with enamel matrix derivative (EMD), a heat-treated preparation derived from enamel matrix proteins (EMPs), has been shown to be of some clinical benefit in eliciting periodontal regeneration in vivo. Although there is extensive information available about the effects of EMD on periodontal regeneration, the precise influence of this material on alveolar bone and the formation of blood vessels and proprioceptive sensory nerves, prominent features of functionally active periodontal tissue, remain unclear. The aim of the present study was therefore to examine the effects of EMD on the ability of human periodontal ligament cells (HPCs) to undergo multi-lineage differentiation in vitro. Our results showed that HPCs treated with EMD under non-selective growth conditions did not show any evidence of osteogenic, adipogenic, chondrogenic, neovasculogenic, neurogenic and gliogenic "terminal" differentiation. In contrast, under selective lineage-specific culture conditions, EMD up-regulated osteogenic, chondrogenic and neovasculogenic genes and "terminal" differentiation, but suppressed adipogenesis, neurogenesis and gliogenesis. These findings thus demonstrate for the first time that EMD can differentially modulate the multi-lineage differentiation of HPCs in vitro. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Citation

Harsh D Amin, Irwin Olsen, Jonathan C Knowles, Michel Dard, Nikolaos Donos. Effects of enamel matrix proteins on multi-lineage differentiation of periodontal ligament cells in vitro. Acta biomaterialia. 2013 Jan;9(1):4796-805

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22985741

View Full Text