Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Ultraviolet radiation is the main cause of skin cancers, and melanoma is the most serious form of tumor. There is no therapy for advanced-stage melanoma and its metastasis because of their high resistance to various anticancer therapies. Human skin is an important metabolic organ in which occurs photoinduced synthesis of vitamin D3 from 7-dehydrocholesterol (7-DHC). 7-DHC, the precursor of cholesterol biosynthesis, is highly reactive and easily modifiable to produce 7-DHC-derived compounds. The intracellular levels of 7-DHC or its derivatives can have deleterious effects on cellular functionality and viability. In this study we evaluated the effects on melanoma cell lines of 7-DHC as such and for this aim we used much care to minimize 7-DHC modifications. We found that from 12 to 72 h of treatment 82-86% of 7-DHC entered the cells, and the levels of 7-DHC-derived compounds were not significant. Simultaneously, reactive oxygen species production was significantly increased already after 2h. After 24 h and up to 72 h, 7-DHC-treated melanoma cells showed a reduction in cell growth and viability. The cytotoxic effect of 7-DHC was associated with an increase in Bax levels, decrease in Bcl-2/Bax ratio, reduction of mitochondrial membrane potential, increase in apoptosis-inducing factor levels, unchanged caspase-3 activity, and absence of cleavage of PARP-1. These findings could explain the mechanism through which 7-DHC exerts its cytotoxic effects. This is the first report in which the biological effects found in melanoma cells are mainly attributable to 7-DHC as such. Copyright © 2014 Elsevier Inc. All rights reserved.


Monica Gelzo, Giuseppina Granato, Francesco Albano, Alessandro Arcucci, Antonio Dello Russo, Emmanuele De Vendittis, Maria Rosaria Ruocco, Gaetano Corso. Evaluation of cytotoxic effects of 7-dehydrocholesterol on melanoma cells. Free radical biology & medicine. 2014 May;70:129-40

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 24561580

View Full Text